基于计算思维的大学计算机基础课程体系构建

更新时间:2024-04-15 作者:用户投稿原创标记本站原创 点赞:4732 浏览:11507

[摘 要]针对目前大学非计算机专业的计算机基础教学中出现的重操作、轻理论,重技能、轻思维,重模仿、轻创新等问题,将计算思维引入到大学非计算机专业的计算机基础教学中,试图构建一种新的课程体系,培养大学生的计算思维能力,为进一步提高大学生利用计算机解决问题的能力打下良好基础.

[关 键 词]计算思维;非计算机专业;计算机基础教学;创新能力

[中图分类号]G642.0[文献标识码]A[文章编号]1005-4634(2013)04-0062-04

0引言

21世纪科学上最重要的、经济上最有前途的研究问题都有可能通过熟练掌握先进的计算技术和运用计算机科学得到解决[1],因此具备善于运用计算机技术进行学习、工作、解决专业问题的能力是高级人才的重要特征之一.通俗地讲,计算机就是用来计算的机器,计算能力的培养是利用计算机解决问题的重要能力之一,而计算思维正是一种计算能力的体现.大学的计算机基础教育承担着学生计算能力和计算思维的培养重任,应该具有与数学、物理相同的地位.目前大学的计算机基础教育存在着一些问题,使得它的教学难以完成既定的教学目标.因此,在新的形势下,应该建立与之相适应的新的教学内容.本文就是在此前提下,提出以培养学生的计算思维能力为核心目标,建立与之相适应的课程体系.

1目前大学非计算机专业的计算机基础教学存在的问题

目前,大学非计算机专业的计算机基础教学存在着以下问题:(1)老师在教授过程中,重视计算机应用软件的使用、轻视利用计算机软件解决实际问题能力的培养;重视计算机程序设计语言语法的学习、轻视利用某种语言解决实际问题的思维能力的培养.(2)学生在学习过程中,重点是模仿老师操作,而忽视创新能力的开发.这些问题的出现,使得学生对于简单的练习可以完成得很好,但对于新出现的问题就不知如何去解决,久而久之对计算机的学习就失去了兴趣.大多数高校非计算机专业的计算机基础教学体现在《大学计算机基础》和《计算机技术基础》两门公共课上,因此,如何提高这两门课的教学效果、提高学生利用计算机解决实际问题的能力成为大学非计算机专业的计算机基础教学需要解决的问题.

2计算思维和计算机基础教学

计算机基础教学应该重点教授哪些内容才能提高学生利用计算机解决实际问题的能力呢?其实这个答案早就蕴含在《大学计算机基础》和《计算机技术基础》的课程名称中.通俗地讲,计算机就是用来计算的机器.那么计算机是如何进行计算的呢?要明白这一点,就要理解计算机计算的原理以及人们如何把实际问题转化成能够让计算机进行计算的步骤,因此计算能力的培养应该在大学计算机的基础教育中得到重视.2006年3月,美国国家自然基金会计算机与信息科学工程部主任周以真(JeanteM.Wing)教授在美国计算机权威刊物《CommunicationsoftheACM》上,首次提出了计算思维的概念,并且这个概念的提出立刻得到了教育界的广泛支持.

周以真教授指出:“计算思维代表着一种普遍的认识和一类普适的技能”[2].在她的观点中,一个非常重要的内容是计算思维是一种可实现的思维.计算机最初就是为了计算而发明的,因此通过计算机基础教学,让学生明白什么是可计算的,什么是不可计算的,慢慢地理解计算机是如何解决现实中的问题的,从而提高学生用计算机解决问题的能力.

2010年7月,在西安交通大学举办的首届“九校联盟(C9)计算机基础课程研讨会”(以下简称C9会议)上,讨论的核心问题是如何在新形势下提高计算机基础教学的质量.C9会议讨论并达成了一系列共识,发表了《九校联盟(C9)计算机基础教学发展战略联合声明》[3].声明的核心要点是:必须正确认识大学计算机基础教学的重要性,需要把培养学生的“计算思维”能力作为计算机基础教学的核心任务和目标,并由此建设更加完备的计算机基础课程体系和教学内容,进而为全国高校的计算机基础教学改革树立标杆[4-6],杨彩云等[7]介绍了计算思维与大学计算机基础教育的关系,很多高校也积极将计算思维引入到大学计算机教育这个教学活动中[8-10].

3基于计算思维的计算机基础教学课程体系

虽然文献[6]建立了大学的计算机基础教学课程体系,但是基于笔者对于计算思维的认识以及十多年的教学实践,仍然提出了一些看法.通过对大学计算机基础教学中的课程进行认真分析,试图构建一种引入计算机思维的新型的大学计算机基础教学课程体系,培养大学生的计算思维能力,从而为进一步提高大学生利用计算机解决实际问题的能力打下良好基础.

1)建立计算的思想,提高计算的意识.即为什么需要计算以及人是如何通过计算来解决实际问题的.

2)构建计算软硬件通用平台的思维.用来计算的数据是怎样在计算机内部存储以及数据是如何被计算的,蕴涵在计算平台中的基本思维对于计算思维的培养具有重要的作用.

3)从多门课程中凝练出的共性思维.对非计算机专业的学生来讲,由于受限于学时数,应将蕴涵在操作系统、数据库、计算机网络等不同课程中具有普适意义的计算思维凝练出来.

4)将不同方面的知识贯通起来形成贯通性的思维.打通知识间的屏障(如术语上的差异、抽象的不同层面等),对于提高计算思维能力很重要.

5)一切以解决各学科的实际问题的思维和可实现的思维为出发点.使学生在利用计算机解决实际问题时,要考虑问题求解算法的思维以及如何让计算机来实现的一种思维.

经过以上分析和梳理,本文提出以计算思维为核心的非计算机专业的大学计算机基础教学课程体系,如图1所示.

4计算机基础教学课程内容设计

1)理论基础部分所涉及的课程内容设计.

理论基础部分的教学内容设计基于以下出发点:一是计算思维的概念以及由此所引出的相关知识;二是计算机硬件系统设计的计算思维,这些是计算环境的介绍;三是计算机软件系统,包括系统软件和应用软件,使学生掌握在计算机环境下的问题求解方法,这是今后学生应用计算机技术解决专业问题的重要基础;四是计算思维的道德.根据以上内容设计的理论基础部分的教学内容见图2.教学内容分为9个教学单元,即计算思维、计算环境、操作系统基础、科技文章编排、数据处理、数据库系统、互联网计算基础、问题求解及计算机安全等.

以上教学内容的设计,涵盖了计算思维相关的计算环境的搭建以及问题求解模型的描述,后者对培养学生程序设计的思维、程序设计算法的基本素养有重要作用,可以学生为第二学期的计算机技术基础的学习打下一个良好的基础.

2)程序设计能力部分课程内容的设计.

对于一所以工科为主、文理经管法学科兼备的综合性大学来说,要让学生学会用计算机来解决不同专业的问题,因此按理工类、管理类、文法类以及艺术体育类,根据不同的类别来设置不同的课程,这部分所涉及的教学内容包含VB程序设计、VF程序设计、C++程序设计以及Ja程序设计,通过这些程序设计语言课程的设置,使学生掌握一门可以解决实际问题的程序设计语言,从而更好地培养学生利用计算解决实际问题的能力.关于不同专业设置不同的计算机程序语言课程内容,见表1.

3)计算机技术与应用部分课程内容的设计.

学习所有计算机课程的最终目的是为了用计算机技术来解决实际问题,而前面所述的理论基础和程序设计能力课程还不足以达到这个目标,它们更加注重计算思维的训练,因此在大学计算机基础教学中还应该设置一些更有针对性的计算机技术及应用课程,以校级选修课的形式来开设.这里既有已开设的程序设计语言延伸,例如VC++就是C++程序设计的延伸;数据库技术、Access数据库、SQLServer数据库、MySQL数据库就是VF程序设计的延伸;多媒体技术、PhotoShop、Flash、虚拟现实等是多媒体内容的深入;Android、网站设计与开发、VBA程序设计、Office高级应用技巧等的学习可以进一步提高解决实际问题的能力.


5实施效果

分别对2009级、201、2012级学生的《大学计算机基础》和《计算机技术基础》两门课程各个部分的得分率进行了分析,如表2所示.

表2中,人数按如下方式确定:三个年级中参加《大学计算机基础》和《计算机技术基础》的非计算机专业的学生,其中由于艺术学院以及体育学院的学生是以特长生形式招收的,因此不统计在总人数中,而且有个别的学生只参加了一门课程的考试,因此也去掉这部分学生人数,从而统计出2009级、201和2012级参加两门课程考核的人数分别为3357人、3398人和3395人.《大学计算机基础》的考核共100分,分为理论题和操作题,理论题为70分,主要考察学生对于计算机基础知识的学习情况,操作题为30分,主要考察学生对于常用Office办公软件的掌握情况,表2列出了各考核部分的平均分以及该分占该部分的百分比.《计算机技术基础》的考核100分,分为理论题和编程题.理论题92分,考察学生掌握计算机编程语言的语法以及阅读程序能力,而编程题则考察学生利用计算机编程语言来解决实际问题的能力,学生写完程序后运行结果正确得8分,否则得0分,表2列出了理论题的平均分以及编程题得分的学生数.从表2可以看出,三届学生对于大学计算机基础操作题的掌握程度比理论题要好,说明学生比较偏重实际操作,而对于《计算机技术基础》来说,程序语法知识点的理解、程序阅读等理论题的得分比编程题的得分高出40多个百分点,说明学生比较偏重计算机编程语言语法知识的学习,阅读程序的能力比编写程序的能力要强,用计算机解决实际问题的能力还有很大提升空间.

从2012级开始部分应用该体系以来,由于引入了计算思维,重视了学生运用计算机解决问题能力的培养,目前已经取得初步的效果.2012级非计算机专业学生2012年秋季学期的《大学计算机基础》课程成绩和2013年春季学期刚刚结束的《计算机技术基础》课程成绩如表2所示.2012级学生在两门课程的考核中都比前两级学生有明显提升,尤其是《计算机技术基础》课程中编程题的得分人数百分比比前两级分别提高了6.97%和10.51%,虽然编程题得分人数的百分比还不是很高,但已经有了明显的提升.

此外,2012级学生在2012年秋季学完《大学计算机基础》后,在学期快要结束的时候开始了2013年春季学期的校级选修课的选课.这里选取了三门与计算机相关的课程,列出了近几年该课程选课人数的变化,如图3所示.

从图3可以看出,选修《Office高级应用技巧》课程的人数从2011年的236人到2012年的442人,再到2013年的776人;《网站设计与开发》课程的人数从2011年的154人到2012年的307人,再到2013年的486人;《Android程序设计》课程的人数从2012年的111人,到2013年的242人,这几门与计算机相关的选修课学生人数在逐年增加,充分体现出学生对计算机课程兴趣有了很大的提高,希望能够学习或掌握一些用计算机解决问题的技术,应该说这也是引入了计算思维、重视培养学生利用计算机解决实际问题能力后的一个初步效果.

6结束语

高等学校非计算机专业计算机基础教学的成功与否很大程度上决定着学生未来应用计算机解决专业领域问题的能力.计算思维的培养是一种用计算机解决问题的能力的培养,它是学生创新能力的重要组成部分,以培养学生计算思维的理念来组织大学非计算机专业的计算机基础教学,其核心观念是考虑未来学生用计算机来解决所学专业问题的能力,关注的是学生可持续发展的计算机应用能力的培养,教给学生思考问题以及解决问题的能力,因此以计算思维为核心的能力培养将是大学计算机基础教学的核心培养目标.