地铁盾构施工测量技术

更新时间:2024-03-28 作者:用户投稿原创标记本站原创 点赞:4096 浏览:13687

【摘 要】本文介绍了地铁盾构施工中的VMT导向系统、盾构姿态人工检测、管环检测等内容.其中VMT导向系统的应用和维护以及经验教训还有盾构姿态人工检测和管环检测的经验和技巧是本文介绍的重点.

【关 键 词】导向系统;盾构姿态;管环检测

1导向系统:

1.1导向系统介绍

1.1.1VMT导向系统概述:

在掘进隧道的过程中,为了避免隧道掘进机(TBM)发生意外的运动及方向的突然改变,必须对TBM的位置和DTA(隧道设计轴线)的相对位置关系进行持续地监控测量.这就是TBM采用“导向系统”(SLS)的原因.

1.1.2导向系统基本组成

导向系统是由激光全站仪(TCA)、控制箱、ESL靶、黄盒子和计算机及掘进软件组成.

1.1.3导向基本原理

洞内控制导线是支持盾构机掘进导向定位的基础.激光全站仪安装在位于盾构机的右上侧管片上的拖架上,后视一基准点(后视靶棱镜)定位后.全站仪自动掉过方向来,收寻ELS靶,ELS接收入射的激光定向光束,即可获取激光站至ELS靶间的方位角、竖直角,通过ELS棱镜和激光全站仪就可以测量出激光站至ELS靶间的距离.TBM的仰俯角和滚动角通过ELS靶内的倾斜计来测定.ELS靶将各项测量数据传向主控计算机,计算机将所有测量数据汇总,就可以确定TBM在全球坐标系统中的精确位置.将前后两个参考点的三维坐标与事先输入计算机的DTA(隧道设计轴线)比较,就可以显示盾构机的姿态了.

1.2导向系统应用

1.2.1激光站人工移站

盾构机的掘进时的姿态控制是通过全站仪的实时测设ELS的坐标,反算出盾构机盾首、盾尾的实际三维坐标,通过比较实测三维坐标与DTA三维坐标,从而得出盾构姿态参数.随着盾构机的往前推进,每隔规定的距离就必须进行激光站的移站.激光站的支架用角钢和钢板做成可以安装在管片螺栓的托架形似,托架的底板采用400×400×10mm钢板,底板中心焊上仪器连接螺栓,长1.采取强制对中,减少仪器对中误差.托架安装位置在隧道右侧顶部不受行车的影响和破坏的地方.安装时,用水平尺大致调平托架底板后,将其固定好,然后可以安装前视棱镜或仪器.托架示意图如图1:

一般在后视靶托架即将脱出盾构机最后一节台车后进行,这样就可以直接站在盾构机上移站,不需要搭楼梯.把前视棱镜安装在后视托架后,测量出棱镜中心到托架底板的高程,然后直接从下面的测站采用极坐标测量方式测出托架的三维坐标.然后在后视靶托架上设站,前视直接采用极坐标测量方式测出激光站托架的三维坐标.然后把后视棱镜安装在后视靶托架上,把激光全站仪安装在激光站托架上整平,把黄盒子固定好,给全站仪接上电源,手动把全站仪瞄准后视棱镜,瞄准的精度在±10左右,然后把全站仪电源关闭.接着在主空室里,启动SLS-T,按“编辑器―F2”进入编辑器窗口,进入激光站编辑窗口,输入激光全站仪中心和后视靶棱镜中心的三维坐标.按“保存”键保存,然后关闭编辑器窗口.再按“定位―F5”键,给激光全站仪定位.定位完成后,再按“方位检查―F5”键,检查激光站和后视棱镜的坐标有没有错误.如果超限,将会显示差值,如果不超限,那么将不显示.最后再按“推进―F4”就完成了激光站的人工移站的全过程.

图1

1.2.2光站自动移站

VMT导向软件SLS―T有激光站自动移站功能,移站的过程除了托架和全站仪及后视棱镜的安装,其它测量工作都可以通过此功能完成.

操作流程为:

程序的启动及后续测量工作在主控室进行.此时SLS-T软件处于“管片拼装”状态,按功能键F3,关闭测量后,通过功能键“激光站移站―F6”来启动程序.在初始窗口中,按下按钮“测量开始―F2”,启动方位检测程序.方位检测被成功的执行后,显示检测结果,在得到理想的结果后,按下F2确认后方位检测的结果.在测定新激光站点坐标前,事先在信息输入窗口中输入如下信息:水平与垂直方向上偏移的近似值及新激光站点的大致里程;当前棱镜的高度及仪器的高度;新站点的点位编码.在信息输入窗口下,按下F2键启动程序.全站仪自动搜索到前视棱镜(即新激光站点)后,自动瞄准棱镜进行测量.屏幕显示计算出来的新激光站点坐标.在测定新激光站坐标时,为避免获得错误的数据,须遮盖住其他的反射棱镜.新激光站点的坐标测定后,将全站仪和后视棱镜转移到新的位置.全站仪和后视棱镜转移到新的位置后,主控室按功能键F2进行确认,新的信息窗口会显示新激光站点三维坐标,然后将新激光站点上的全站仪手动转向新的后视点即原先的激光站,按下F2,重新调整定位全站仪上的刻度.成功执行上述的步骤后,出现一新的信息窗口.通过按下F2功能键完成激光站移站程序.

1.3导向系统维护与检修

1.3.1ELS靶:

1.由于ELS靶的安装位置附近有注浆管,在注浆的过程中很容易被人碰到,而前面板是玻璃作成的,容易被破坏特别是ELS棱镜更是容易被工人碰动,在没有对ELS靶进行保护之前,我们的ELS棱镜曾多次被工人碰掉,对掘进造成不小影响.后来我们在ELS靶的四周用4块木板保护起来后,就再也没有人碰掉ELS棱镜了;2.ELS靶前面板保护屏要经常擦干净,防止激光接收靶接收的信号太弱;3.ELS靶附近不能有强光,强光会使VMT姿态显示不正常.

1.3.2电缆:

在前期我们按常规安装好导向系统传输电缆卷后,在盾构机向前推进的过程中,经常把传输电缆拉断.严重的时候,甚至把激光站托架都拉动,把黄盒子拉掉,还威胁到激光全站仪的安全,极大地破坏了导向系统.为了克服这个问题,我们采用了三种办法.1.把在导向系统的传输电缆卷安装在激光站的前面,这样盾构机推进时,电缆一直是顺着拉;2.在盾构机电缆经过的地方用安全网覆盖,把盾构机上的各个突起物盖住,防止勾断电缆;3.通过加强平时的巡视,经常整理传输电缆.通过以上办法后,电缆再也没有被拉断过.

1.3.3激光站和黄盒子:

(1)在始发时,由于激光站托架是安装在竖井里面,激光全站仪和黄盒子容易被雨水淋湿,一定要加以保护.2.在隧道里面时,由于工人冲洗管片时,容易被水浇湿,需要经常提醒掘进工人.激光全站仪和黄盒子要经常擦干净、凉干.

2盾构姿态人工复测

在盾构施工的过程中,为了保证导向系统的正确性和可靠性,在盾构机掘进一定的长度或时间之后,应通过洞内的独立导线独立的检测盾构机的姿态,即进行盾构姿态的人工检测.

为了大家能更好的理解后面的内容,在介绍盾构姿态人工检测前,先简单介绍一下盾构施工中所用到的坐标系统.

2.1盾构施工坐标系统:

2.1.1全球坐标系统

整个工地的测量都与这个坐标系统有关,工地负责将有关点的坐标(全球坐标系统)提供给VMT.这包括DTA的数据,激光站、后视靶的坐标数据.

2.1.2DTA坐标系

DTA坐标系是盾构施工坐标系统,它是以线路设计中线为参照的一种三维坐标.只要将盾构始发站开始的线路设计资料输入,掘进中任意点里程点的平面坐标和高程,以及线路的平面、纵剖面状态,通过计算机处理后,均为已知并可显示出来.盾构机掘进中某一时刻的里程位置,则是通过设置在导线点上的激光自动全站仪、自动跟踪盾构机上的光靶进行测量获取的.

2.1.3TBM坐标系

TBM坐标系是盾构机本身的一种局部坐标系统,它主要用来检测盾构机的姿态,也是三维坐标.


2.2盾构机参考点的布置

在进行盾构机组装时,VMT公司的测量工程师就已经在盾体上布置了盾构姿态测量的参考点(共21个),并精确的测定了各参考点在TBM坐标系中的三维坐标.我们在进行盾构姿态的人工检测时,可以直接利用VMT公司提供的相关数据来进行计算.

2.3盾构机参考点的坐标(S267盾构机)

2.TBM坐标系以盾体中轴线为X轴,X轴的水平法线为Y轴,垂直法线为Z轴.

3.盾体前参考点坐标(0,0,0),后参考点(0,-3.9491,0)

2.4盾构机参考点的测量

盾构姿态人工检测的测站位置选在盾构机第一节台车的连接桥上,此处通视条件非常理想,而且很好架设全站仪.只要在连接桥上的中部焊上一个全站仪的连接螺栓就可以了.测量时,应根据现场条件尽量使所选参考点之间连线距离大一些,以保证计算时的精度,最好保证左、中、右各测量一两个点,这样就可以提高测量计算的精度.例如在我们在选择S267盾构机的参考点时,即是选择的1、10、21三点作为盾构姿态人工检测的参考点.


2.5盾构姿态的计算

2.5.1盾构姿态的计算原理

盾构机作为一个近似的圆柱体,在开挖掘进过程中我们不能直接测量其刀盘的中心坐标,只能用间接法来推算出刀盘中心的坐标.

如图A点是盾构机刀盘中心,E是盾构机中体断面的中心点,即AE连线为盾构机的中心轴线,由A、B、C、D、四点构成一个四面体,测量出B、C、D三个角点的三维坐标(xi,yi,zi),根据三个点的三维坐标(xi,yi,zi)分别计算出LAB,LAC,LAD,LBC,LBD,LCD,四面体中的六条边长,作为以后计算的初始值,在盾构机掘进过程中Li是不变的常量,通过对B、C、D三点的三维坐标测量来计算出A点的三维坐标.同理,B、C、D、E四点也构成一个四面体,相应地求得E点的三维坐标.由A、E两点的三维坐标和盾构机的绞折角就能计算出盾构机刀盘中心的水平偏航,垂直偏航,由B、C、D三点的三维坐标就能确定盾构机的扭转角度,从而达到检测盾构机的目的.

2.5.2通过COORD坐标转换软件来推算盾构姿态

此方法在外业作业时,只需测得任意三点的坐标,把实测的三点当成是公共点,利用COORD软件,可以方便快捷地推算出前后参考点的三维坐标,解算出前、后参考点的三维坐标后,与盾构机所在里程的线路设计坐标相比较,其差值为,可获得如下资料:

前参考点水平偏差等于

前参考点垂直偏差等于

同理可得盾体后参考点的水平及垂直偏差值

盾构机的坡度等于(为盾体前后参考点连线长度).

3管环检测

3.1管环测量概述

由于在盾构掘进过程中,刚拼装的管环还没有来得及注入双液浆加固,因此还不稳定,经常发生管环位移现象.为了防止管环的侵限,我们首先是提高控制测量的精度,其次是提高导向系统的精度,最后就是通过每天的管环测量,实测出管环的位移趋势,采取措施尽量减小位移量.

3.2管环测量方法

根据管环的内径是2.7米,采用铝合金制作一铝合金尺,铝合金尺长3.8米(可根据实际情况调整长度).在铝合金尺正,贴上一个反射贴片.根据管环、铝合金尺、反射贴片的尺寸,就可以计算出实际上的管环中心与铝合金尺上反射贴片中心的高差.测量时,首先用水平尺把铝合金尺精确整平,然后用全站仪测量出铝合金尺上反射贴片中心的三维坐标,就可以推算出实际的管环中心的三维坐标.

管环测量示意图

管环中心标高推算示意图

3.3管环姿态计算

管环测量设站时,建立一个管环检测作业“GHJC”,把管环检测数据都存储在这个作业里.回到办公室后,将实测数据下载到电脑,导入EXCEL里面,编辑成如下格式.

表中第1列是管环号,第2列Y值,第3列是X值,第4列是点的绝对高程Z值.接着在EXCLE里,把上面表格数据编辑成如下表:

接着把上面表格中的数据复制到记事本程序里面,保存.文件的后缀名必须是.SCR,如“管环检测外业数据.SCR”.这样就把管环检测的外业数据编辑成了CAD的画点脚本文件.通过CAD的脚本功能,就很方便快节地在CAD里面把点画出来.

打开AutoCAD,在模型状态下,打开菜单栏的“工具(T)”选项,在下拉子菜单中选择“运行脚本(R等)”,或者在命令行中输入“.SCR”,两种方式都是运行脚本,AutoCAD便查找脚本文件.操作者找到要调用的脚本文件“管环检测外业数据.SCR”后,直接打开它.AutoCAD便自动把点画出来了.

点位画出来后,就可以在CAD里直接量出管环的水平和垂直姿态了.通过以上管环的测量和计算方法,解决了管环检测数据量大,计算难,测量时间长的问题.大大提高管环检测的效率和准确度.

4结束语

由于盾构机上的VMT导向系统必须有控制测量的支持才能运作,所以控制测量还是盾构隧道测量的基础.为了保证隧道的顺利贯通,我们首先要做好控制测量,然后就是保证导向系统的正常运行,定期对盾构姿态进行人工检测,保证导向系统的正确可靠.加强管环姿态检测,及时发现管环的位移趋势,防止管环安装侵限.加强管环姿态的检测同时也是对导向系统的复核.由于笔者才疏学浅,文中难免有不周全之处,恳请各位提出批评与建议.