陶瓷材料在口腔医学中的现状与

更新时间:2024-03-12 作者:用户投稿原创标记本站原创 点赞:23386 浏览:106504

【摘 要 】陶瓷材料在我国被应用已有二千多年的历史,随着我国陶瓷工业的不断向前发展,无论是科研还是生产都呈现了壮观可喜的景象.尤其是陶瓷的种类,性质,以及工艺上的新成就早就被我们口腔医学界所关注.

【关 键 词 】陶瓷材料;口腔医学;应用现状

【中图分类号】R78 【文献标识码】A 【文章编号】1007-8231(2011)11-1981-01

1.氧化锆陶瓷

1.1 氧化锆全瓷牙修复体

德国Vita公司开发的In- ceram技术是制作高强度、低收缩全瓷冠的技术,也是牙科陶瓷全冠制作中惟一使用其专利技术命名的制作技术.Suarez等认为 In- ceram氧化锆陶瓷后牙固定义齿经过 3 年的临床观察是可以被应用的,但该材料被推荐为局部固定义齿修复方法之前,还需要进行长期的临床研究.此外,Kohal等报道了一个临床应用氧化锆陶瓷为种植体全冠系统成功的病案,并指出能改变灰色牙龈的材料是氧化锆陶瓷.Piwowarczky等认为,3M公司的 La All- Ceramic系统( 是以高强度的氧化锆陶瓷为核心的全瓷修复系统)能广泛地用于前牙和后牙的局部固定义齿修复中.

1.2 氧化锆陶瓷作为根桩的应用

氧化锆陶瓷桩核在Y- Ce- TZP 制作中应用较为广泛,因为这样既可以保留Y- TZP 陶瓷的高强度,又具有 Ce- TZP 陶瓷的高韧性;另一方面 Ce- Y- Mg 复合稳定剂能够对氧化锆陶瓷起到很好的增韧,增强效果.由于其强度高、韧性好,力学性能能够满足牙科桩钉的要求,因此可用于氧化锆桩核的制作.制作过程为预成氧化锆棒做桩核蜡形的核心,包埋铸瓷,试戴粘固同常规.由于氧化锆陶瓷是一种高强度瓷,具有较高的抗弯强度,而与之匹配的特制铸造陶瓷又能于氧化锆桩结合在一起构成瓷桩核,因此不但透光性好,而且力学性能超群.

1.3 氧化锆陶瓷在牙种植方面的应用

在氧化钴陶瓷在牙种植方面的应用中,很多学者认为通过基桩颜色改善美观可以通过设计铝锆可切削基桩,用于修复上颌前牙区的单个牙缺失.这种美观的可切削陶瓷前牙种植基桩是通过氧化铝、氧化钸和氧化锆烧结成一定形态的基桩胚体,可切削加工,然后玻璃料渗透而成.Brodbeck认为,氧化锆陶瓷种植体基台不仅具有良好的口腔材料性质而且具有极佳的生物相容性.Rimondini等体外实验比较了氧化锆陶瓷基桩和纯钛基桩表面变形链球菌、血链球菌、粘性放线菌和牙龈卟啉单胞菌等细菌的定植,发现氧化锆陶瓷基桩表面变形链球菌的定植超过钛基桩,血链球菌更易定植在钛基桩表面.体内实验发现牙周致病菌在钛基桩表面的定植量超过氧化锆陶瓷基桩.Yildirim等研究认为氧化锆陶瓷基台抵抗断裂的能力是氧化铝陶瓷基台的两倍多.

2.纳米陶瓷

2.1 陶瓷在人工牙冠的应用

人工牙的研究虽然多,不过研究的方向比较集中,大部分都是关于陶瓷颗粒及块体的制备方面,而核瓷与饰瓷的匹配性、人工牙与基牙的适合性、动态载荷测量、疲劳测试及临床应用反馈等方面的研究尚待深入进行.可切削纳米陶瓷块的研制和开发使口腔修复治疗更加方便快捷,同时可切削陶瓷块体材料的应用也可拓宽纳米陶瓷的制备方法,有效提高纳米陶瓷材料的力学性能.

2.2 纳米陶瓷种植材料

口腔医学的医疗研究中,种植陶瓷材料主要用于在一些套人工骨骼,关节以及人工牙根种植体等.纳米轻基磷灰石具有良好的生物活性和生物降解性,它和胶原的纳米复合物在种植体降解和替代的过程中可以进行较多的骨改建l1Fl.纳米氧化铝和轻基磷灰石陶瓷材料提高了成骨细胞的功能.氧化铝一氧化错纳米复合陶瓷具有对微裂纹扩展的高度抵抗性,使其可以作为一种瓷关节修复体的可靠性选择国.

3.生物活性陶瓷

生物活性陶瓷是指表面具有生物活性或者具有生物吸收性的陶瓷材料,其主要特点是在生物体内能够诱发新生组织的生长.羟基磷灰石陶瓷、硅酸钙陶瓷、生物活性玻璃等在口腔医学领域应用较广泛.

3.1 磷灰石陶瓷

在口腔医学领域对羟基磷灰石的研究主要集中在材料的制备与临床效果评价等方面.袁捷等将骨髓基质干细胞与珊瑚羟基磷灰石复合制备人工骨,然后把制备的人工骨植入犬下颌骨阶段性缺损部位,32周后观察发现骨修复较好,组织学显示有板层骨形成,连接处骨性愈合;胡图强等研究了纳米羟基磷灰石(富含生长因子血浆复合材料)修复牙槽突裂的生物性能及富含生长因子血浆在其中的作用,实验证明纳米羟基磷灰石具有较好的生物活性;M.Sadat-Shojai等利用羟基磷灰石纳米棒作为填充剂以增强牙科粘结剂的性能,首先借助一种简单的水热工艺制备了高纯度、高结晶度、高表观比率羟基磷灰石纳米棒,将合成的粉体按0%~5%与粘结剂溶液混合,然后利用超声分散均匀,得到牙本质粘结剂,体外力学性能测试显示添加0.2%~0.5%羟基磷灰石纳米棒后粘结剂力学性能获得大幅提高,其微观剪切强度与牙本质相当.


3.2 三钙陶瓷

TCP具有诱导根尖周骨质再生、牙髓钙桥形成的生物学特性,在口腔医学领域得到广泛应用和重视.晓兵等将经过诱导的犬骨髓基质细胞与多孔β-TCP支架复合后植入犬的下颌骨的全层节段性缺损处,评价三维多孔β-TCP修复下颌骨节段性缺损的生物力学,术后6个月进行CT影像学分析,结果显示下颌骨极限缺损区已修复,下颌骨呈连续性,且形态较对照组完美,三维多孔β-TCP复合体起到了形态和功能修复的双重目的,具有控释性能的可注射牙槽骨β-TCP修复材料的体外细胞毒性实验显示,可注射牙槽骨修复材料中β-TCP对细胞的生长和增殖无明显抑制作用、无明显的细胞毒性;文献报道了混悬聚乳酸与TCP复合并用于修复大鼠下颌骨缺损实验,创口观察及组织学观察显示修复缺损处早期有大量纤维结缔组织形成和炎性细胞浸润,之后新生的纤维结缔组织将材料分隔成块状,缺损区出现大量新生骨岛,同时可见丰富的成纤维细胞和成骨细胞.